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Abstract

The uncertainty in the determination of the exponent
n in the equation of the subcritical crack velocity
from four-point-bending experiments is investigated
with respect to different evaluation methods. If the
bending strength values are Weibull distributed, and
the crack-extension parameter n is calculated by
linear regression of the bending strength values of a
number of experiments at different loading rates, an
analytical solution can be given for the mean value
and the standard deviation. It turns out that both
the mean value and the standard deviation depend
on the Weibull modulus m and the true value n,,
The analytical solution illustrates the essential
features of this dependence on m and n,. For other
evaluation methods, e.g. the one proposed as the
CEN standard, this dependence is investigated by a
Monte-Carlo simulation for different crack-exten-
sion parameters 1, and different Weibull moduli m.
The standard deviation, which is calculated, is the
theoretical lowest limit for certain evaluation proce-
dures. By this, the estimation of the margin of error
is put on a firm ground. Since the standard devia-
tion increases with ny, there is only a limited range
in which n can be determined by four point-bending
tests. A new evaluation method, which gives a better
approximation than the method proposed as the
CEN standard, is presented. The computational
effort of this evaluation method is only slightly
larger. It furthermore allows the number of experi-
ments to be analytically calculated, which is neces-
sary to obtain a certain accuracy.

Die Unsicherheit in der Bestimmung des Exponenten
n in der Gleichung der unterkritischen Riffausbreitung
aus Vier-Punkt-Biegeversuchen wird bei verschiedenen
Auswertemethoden untersucht. Falls die Biegefestig-
keitswerte Weibull-verteilt sind und der Riflaus-
breitungsparameter n durch lineare Regression der
Biegefestigkeitswerte einer Anzahl von Versuchen

bei verschiedenen Lastraten bestimmt wird, kann
eine analytische Losung fiir den Mittelwert und die
Standardabweichung angegeben werden. Es stellt
sich heraus, ddf$ sowohl der Mittelwert als auch die
Standardabweichung vom Weibull-Modul m und
vom urspriinglichen Wert n, abhdngen. Die analy-
tische Losung verdeutlicht die wesentlichen Zusam-
menhdnge. Fiir andere Auswertemethoden, wie z. B.
die als CEN-Standard vorgeschlagene, wurde diese
Abhdngigkeit  fiir verschiedene Rifausbreitungs-
parameter ny und verschiedene Weibull-Moduli m
mit einer Monte-Carlo-Simulation untersucht. Die
berechnete Standardabweichung ist die theoretische
untere Grenze fiir ein bestimmtes Auswerteverfahren.
Damit wird die Fehlerabschdtzung auf eine solide
Basis gestellt. Da die Standardabweichung mit n,
ansteigt, gibt es nur einen eingeschrinkten Bereich,
in dem n-Werte aus Vier-Punkt-Biegeversuchen
bestimmt werden konnen. Eine Auswertemethode
wird vorgestellt, die eine bessere Ndherung ist, als
die fiir den CEN-Standard vorgeschlagene, und
nur geringfrigig hoheren Rechenaufwand erfordert.
Diese erlaubt weiters eine analytische Berechnung
der Anzahl von Versuchen, die notwendig ist, um eine
bestimmte vorgegebene Genauigkeit zu erreichen.

On étudi lincertitude sur la détermination de
l’exposant n de l'équation de vitesse de propagation
des fissures sous-critiques utilisée dans les tests en
quatre points ceci en fonction des méthodes d’évalua-
tion employées. Si la résistance a la flexion suit une
loi de distribution de Weibull, et que le paramétre n
d’extension de la fissure est calculé par régression
linéaire a partir de valeurs de résistance d la
flexion issues de plusieurs expériences effectuées a
des vitesses de chargement différentes, il est possible
de donner une expression analytique de la valeur
moyenne et de ['écart-type. En fait, aussi bien la
valeur moyenne que [écart-type dépendent du
module de Weibull m et de ny. La solution analytique
donne les caractéristiques essentielles de cette
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dépendance en m et n, Pour d'autres méthodes
d’évaluation, ie. celle proposée comme standard
CEN, on étudie cette dépendance par simulation
de type Monte-Carlo pour différents paramétres
d’extension de la fissure ny, et différents modules de
Weibull m. L’écart-type que nous calculons est la
limite inférieure théorique pour certaines procédures
d'évaluation. On peut ainsi fonder ['estimation de
lerreur sur une base sire. L’écart-type augmentant
avec ny, N ne peut étre déterminé par des tests en
quatre-points que dans une certaine fourchette. On
présente une nouvelle méthode d’évaluation qui
fournit une approximation meilleure que celle du
standard CEN. Cette méthode d'évaluation ne
réclame qu'un léger supplément de calcul informa-
tiqgue. De plus, il permet de calculer analytiquement
le nombre d’expériences nécessaires pour obtenir
une précision donnée.

1 Introduction

The strength of ceramics mainly depends on the
length of cracks and pores, which are present in
the volume or on the surface of the material. In
most ceramics, these cracks extend at room tem-
perature in a corrosive atmosphere (e.g. water
vapour). If a is the crack length and K, the stress-
intensity factor in fracture mode 7, the dependence
of the velocity of the crack extension ¢ is usually
described by the power law

a(r) = AK (" (1

where the dependence on the K factor is due to
the breaking of stretched bonds at the crack tip.'
It has been observed that the power law is able to
describe the crack extension in ceramics in a wide
range of loading rates and in different environ-
ments.? Because the lifetime of a ceramic is limited
by these two parameters A and n, their deter-
mination is of particular interest. A common way
to determine the crack-extension parameters is to
perform bending tests at different loading rates.

In recent years the European Committee for
Standardization (CEN) and the German Institute
for Standardization (DIN) have made great efforts
to develop standardized testing methods for
ceramics, e.g. the testing of bending strength’ and
fracture toughness.* A proposal for the determina-
tion of the crack-extension parameters by four-
point-bending tests has been worked out.’

In this work the dependence of the crack-exten-
sion parameter n, which denotes the crack-extension
parameter obtained by a number of Weibull-dis-
tributed bending strength values, on the Weibull
modulus m and on the true value n, is analytically
given for the case of a linear regression of the

measured values at different loading rates. From
these equations the main features can be seen. For
the evaluation proposed as the CEN standard (as
well as for other possibilities of evaluation), the
dependence is tested by a Monte-Carlo simula-
tion, which, if no analytical solution can be found,
is commonly used to compare different evaluation
methods (e.g. the bending strength of ceramics by
Steen et al.®).

It is shown that four-point-bending tests have
only a limited applicability to determine the crack-
extension parameter #n. Only taking into account
that the measured values are Weibull-distributed
at each loading rate, the margin of error increases
with increasing » and decreases with increasing m.
In this work the limit is set to be 20%. This is
confirmed by the CEN standard draft,® where a
typical error of the linear regression procedure of
20% 1is seen as an acceptable limit. A standard
deviation of more than 20% is seen as impractic-
able, because such ill-defined values lead to ex-
tremely different results in lifetime calculations.’
In particular, n values above 100, which are ob-
tained for materials such as RSiC,* are question-
able, if only fifty specimens (which is prescribed
by the CEN standard) are tested. The CEN
standard draft® states that the procedure should
only be used for »n values lower than 80. The
calculations in this paper, however, show that the
limit is dependent on the Weibull modulus m and
may be much less (e.g. 30 for m =10, see Section 4).

A better mathematical evaluation procedure is
presented in Section 5. On the one hand, this
procedure allows the range to be extended, in
which n can be determined by four-point-bending
tests with respect to the limit already stated; on
the other hand this evaluation procedure allows
the number of experiments, which is required to
obtain a certain given accuracy, to be calculated
in advance.

2 Theoretical Background

The following two assumptions have to be made:
firstly, the crack velocity obeys a power law, see
eqn (1), with constant n,. If n, varies due to differ-
ent failure mechanisms, such as subcritical crack
extension due to a viscoelastic behaviour of the
second phase’ or pore growth,!® only that regime
in which n, is constant should be regarded for
further evaluation.

If the dependence of the K factor on the applied
time-dependent stress of(¢) is defined by

Ky (1) = o(1) Ya'*(2) )

with Y being a geometry-dependent factor and «
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the crack length, the second assumption is that a
critical stress-intensity factor exists,

Ky = s(t) Ya"*(r) (3)

where s is the (time-dependent) defect strength. At
the time of fracture ¢, ofz) and s(z) coincide,
o(ty) = s(t;), or likewise Ki(f) = K,.. For a power
law dependence of the subcritical crack extension,
one obtains''

! 1(ny 2)
s(t) = (s"<f2(0) — %Ldf 0”0(1')) (4)

B 1s related to the factor 4 from eqn (1) by

— 2 2-n
B = AYz(no _ 2)KIC 0 (5)

The defect strength at time ¢ = 0, 5(0), is com-
monly denoted as the inert strength. Equation (4)
can be solved analytically for a constant stress
rate o(t) = ot. Thus the well-known relation for
the bending strength at the fracture time ¢, results:

o (1) = (ng + DIB(s"(0) — 5" 1p)  (6)

The second term on the right hand side is usually
omitted. This is valid only if subcritical crack
growth leads to a decrease of the defect strength
at time f. In this case, the term representing the
inert strength dominates by far the one of the
defect strength at the time #;, because at room tem-
perature n, is very high in most of the ceramics.
Hence eqn (6) is simplified:

log of(ty) =

P log o + const. (7)
From eqn (7) the crack extension parameter n, is
obtained in a simple way by plotting the loga-
rithm of the bending strength values versus the
logarithm of the loading rates. In such a diagram
ny and the slope &, of a regression line of the
bending strength values are related by
1

o= T 1 ()
The following discussion is restricted to the case
where measured data for the crack extension
parameter obey the simplified equations already
stated. This means that all measured data decrease
with decreasing loading rate and keep off the
plateau region of the inert strength.

It was now proposed for the CEN standard that
tests have to be performed at five loading rates,
each differing by one order of magnitude. For
each of these loading rates ten tests are required.
The mean value of these experiments is used for a
linear regression fit. The crack-extension parameter
n is then given analogously to eqn (8),

1

n=p-1 9)

with k being the fitted slope of the regression line.

From now on » and k are the crack-extension
parameters obtained by measurements and the
respective evaluation procedure, while n, and k,
are the true values.

From this point of view, it is by no means clear
that n and #n, are identical. If the measured values
are Weibull-distributed at each loading rate, the
margin of error of » increases with decreasing
Weibull modulus m. Furthermore, the slope k& of
higher #n values is closer to zero, see eqn (9). From
this non-linear relationship a statistical deviation
in the measurement of k, which is inevitable be-
cause of the inherent properties of ceramics due to
statistical failure, leads to a higher uncertainty for
high » than for small n. Therefore the experi-
mentally determined crack-extension parameter n
is dependent on both the Weibull modulus m and
the true value n,!

It is now supposed that the failure probability
of the Inert strength obeys a two-parametric
Weibull law with scale parameter o, and Weibull
modulus m:

P =1 — exp [~(s(0);,)"] (10)

The mean inert strength &, is related to the scale
parameter o;, of the inert strength by

o i
G = omr(l +m) (11)

Usually tests are carried out at a high loading rate
to provide from crack extension. If crack exten-
sion occurs, another Weibull distribution with a
loading rate dependent scale parameter o, and
another Weibull modulus m. develops from the
original distribution:

Py =1 — exp [~(a(tp)/ap)™] (12)
Now eqn (6) is rewritten for a certain loading rate
o

0" (1)) = (ny+ 1)d3Bs"X(0) (13)
Inserting eqn (13) into eqn (10) and comparing
with eqn (12), the parameters m. and oy thus are

related to the true Weibull modulus m and the
inert scale parameter o, by

0-,3 - O'EZ” 2)/(n0+1)((no+ I)Bd_ﬂ)ll(n(,H) (14)

ny + 1

mMs = m
ny — 2

From this equation the loading rate dependence
of the scale parameter oy follows:

log o =

P log g + const. (15)
If the Weibull modulus m is known, the loading
rate dependent probability function is now given
by eqn (12), with m. related to m by eqn (14).
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3 Linear Regression of All Measured Values

A linear regression of all measured values is now
investigated, because an analytical solution can be
found for this case. From this solution one can
understand the essential features, i.e. the depen-
dence of #» on m and n,.

Now experiments are carried out at N loading
rates, each differing by one order of magnitude.
They are described by the parameter B8 running
from 0 to N—1. Without loss of generality, the
highest loading rate o, can be normalized to one
as well as the highest scale parameter oy It can
be shown that the slope of a linear regression is
unchanged by this procedure. The reason being is
that in general a multiplication with an arbitrary
value leads only to a shift in a diagram of loga-
rithmic stresses versus logarithmic loading rates.
Then the scale parameters and the loading rates
have the simple form:

xg=logos=—-B B=0...N—-1

B
ny + 1 (16)
Therefore, in the following sections, eqn (16) is
used for the definition of the loading rates and the
scale parameter. The slope of a regression line X
is obtained by collecting x = (x), etc., with (z) =
1N 30% zg

(xy) = (xX»)
= 17
AT ey ("
Inserting non-normalized values into this equation
leads to the same slope as normalized values.

3.1 Expectation value and standard deviation of the
slope &

Through experimental measurements one obtains
a set of strength values oy; for N different loading
rates, being labelled by B, each of the sets consist-
ing of M values being a distribution dependent on
n, and m.. Hence, B runs from 0 to N—1, j from 1
to M. It is useful to define parameters pg, which
are related to the strength values and the scale
parameter by

(,—Bf (18)

Pg =
Then the dependence on n; and k, respectively is
explicit. By eqn (17) the slope of a linear regres-
sion of all values can be calculated:
N-1 M
o P =K@ =k + 3 Y eglogpg  (19)
B=0 j=1
Here the short-hand notation (pg) = p was intro-
duced. The coefficients c, are given by:
_6(N—-1-2B)
6~ TMNVE —1) (20)

Kpos, - -

An immediate consequence of this definition is

N-1
2 =0 20
B=0
Equation (19) is rewritten as:
K(p) = ko + u(p) (22)

The variables pp obey individual Weibull distri-
butions eqn (12). Hence expectation values of
measurements are predicted as integrations with

measure
dW =[1 dpgP(pg) (23)
B.j

If k denotes the outcome of a single measurement
of K (p), the corresponding distribution function is
given by

£k = | I doyPpy) 8(X(0) = k) 29

dw

It can be shown that the expectation value of X(p)
is the true value k,. The expectation value of k is
then obtained by integration:

W = [ d ko) = [ aw k [ ak s(x(0) - 1)
= [awx(o) = ko + @

C
= ko + P_ |1 dwin pg 25
o+ T3 [awin g, (25)
The factor In 10 arises because of the change from
decadic to natural logarithms. By this, the integral
can be solved analytically:

deln Py = jo dp m.p™ e In p
| —
P'p)

1 [ . Y
—%,[0 dve lnv——m

(26)
for all B and j. The fact that the integral over all
variables p,; # pg gives unity was used here. The
number in the term on the right-hand side is
Euler’s gamma, y ~ 0-577216. Thus the expecta-
tion value of k& turns out to be:

Y
k:k——— =k 27
(k) 0 mi(In 10) jZBZ Cp 0 (27)
0

as already stated. Therefore the expectation value
of the slope of the linear regression gives the true
value k,. This means that the measured values of
the slopes are distributed around the true value .,
which is a satisfactory result for the evaluation
procedure.

Let us now proceed with the second important
parameter, the standard deviation. It is a measure
for the accuracy of the evaluation procedure and
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obtained by taking the square root of the variance
(Ak)*:

(AkY = (k%) — (k)* = (kG + 2kou + v — ki)
= 2kolu) + () = () (28)

0
By this, the standard deviation of & is simply the
square root of {(#*). The procedure to compute (u*)
is closely related to eqns (24) and (25):

2= In pgInp, (29
W my%%JdW oin p (29)
In the case B; = ai the integral can be expressed in
terms of the second derivative of the Gamma
function I'(z) with respect to z at z = 1, otherwise
the integral is given by the square of eqn (26).
Thus it follows

5

1 m
j dWn pg N py;= E (Y + BBjaai g) (30)

6 being the Kronecker symbol. Inserting eqn (30)
into eqn (29), it is found for the variance of k that

~

2 I L 2
GO = m? (In 10)232,,; (<)

I 1
=27 31
m?(In 10)> MN(N> — 1) G1)

From this equation the standard deviation Ak can
be calculated for an arbitrary number of tests M
at an arbitrary number of loading rates N, the
dependence on M and N being explicit. This is the
theoretical lowest limit for the respective evalua-
tion procedure and only a consequence of the
Weibull-distributed failure probability of ceramics.
The standard deviation of &k therefore is inversely
proportional to m., which is related to the true
Weibull modulus m measured at a high loading
rate by eqn (14). It should be noted that this rela-
tion is valid for all other evaluation procedures
presented in the following sections. To reduce the
standard deviation, one has to increase the number
of tests and/or the number of loading rates.

3.2 Expectation value and standard deviation of the
crack extension parameter n

Unfortunately, the relation for the evaluation of
(n) is more difficult. The expectation value is
obtained, if the same procedure as presented in
Section 3.1 is applied, by

n 1 _ 1
{n+1)9 = <(k0 n u<p>>2> = J W T o)y

1 u u\t
= + — IR
}—ngW(l 3(k0) ¥ s(ko) N ) (32)
The integrand was expanded into a series, which is

only valid for |u| < k,. Denoting {(wk,)"} = f, the
standard deviation is obtained using eqn (9):

1= ()

=(ng+ D)1 +3f,+ 54+ )

2 1 \
(n+1) _<*k0+u(a>
=(ng+ DA +2/+f7+-)

(An)? ={(n + 1) — (n + 1)

= (gt D+ M= 745, = 2 S =)
(33)

From the last equation the variance and thus the
standard dewviation can be obtained up to sufficiently
high accuracy. In practice, it is very tedious but
straightforward to calculate the higher orders.
Hence, f, was computed only up to / = 6. This
approximation was tested by a Monte-Carlo
simulation described in Section 4. The accuracy
((An(approx.) —An(Monte-Carlo))/An(Monte-Carlo))
was proven to be better than 2-5% in the regime
where the standard deviation does not exceed 20%
of n (An/n < 0-2). If one takes only the first term f,
into consideration, which is obtained by a Gaus-
sian propagation of errors, the accuracy of the
approximation is below 20% in the worst case in
the regime already described.

To calculate the higher orders of the approxi-
mation, an appropriate index symmetrization was
imposed. The integral for the fourth order is then

dW ln pg Inp,; In pg In p,
=9+ 7’2')’2(5,] + 8y + 0y + Oy + Oy)

+ 722(5y5k1 + 88, + 8;04)

—(yys + 37272)(5,;/A- + 8 + Ot 8y

+(y — 3V +4dyy + 6?’2')’2)51;,'“ (34)
Here all combinatoric possibilities have to be taken
into consideration. The symbol §;, (and & like-
wise) introduced in eqn (34) has to be understood
as being 8, =1 for i=j=k=1/and §;,= 0 other-
wise. The coefficients vy, are obtained as derivations
of the gamma function:

B dT(z)
Y= dZI
Taking eqn (21) into account, only two terms of

the integral differ from zero. Therefore the term of
the fourth order is thus reduced to

=) )=o)
X () =37+ dyyy 677 + 3 (30

The number of the combinatoric possibilities in-
creases very fast with / and the full solution of the

- (=Y (35)

==1
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integral is quite complex. Hence, only the result
for the sixth order is given:

#=rtmia)

XY, (a(ch) + 15b(ched)+ 20f(ch)* + 90g(c3)’) (37)
B

The coefficients were determined by the solution
of an appropriate system of equations:
a = 15y"y, + 20v'y; — 180v*y] + 15y,
= 120yvyy; + 30v; — 15vyy,
= 10v; + 6yys + v
b= v (6Y’y: + 4yys — 33 + V)
F=Y09Y"y3 + 6vvyv; + ¥3)
Y3
g= (38)
In practice, only the Weibull modulus m of the
inert strength is known, which is related to m. by
eqn (14). Hence, in all the following tables the
dependence on the Weibull modulus m of the inert
strength and not on m. is given. This i1s done
for practical reasons, because the inert modulus m
of a matenal is usually known. Thus, one can
directly see the minimal standard deviation that
can be obtained for a certain evaluation procedure.

As an example, Table la shows the standard
deviation of n for the case of ten experiments at
five different loading rates, which is the proposed
number of tests for the CEN standard, calculated
by the Monte Carlo simulation. If the standard
deviation An exceeds 20% of , it is omitted from
Table 1a, because it is seen as impracticable to use
such ill-defined values for lifetime calculations.

If a number of experiments performed with the
same material by different laboratories is avail-
able, a mean value can be calculated. For this
calculation it is important to use the slopes k of
the linear regressions and not the » values. As can
be seen by eqn (27), the true value results from the
procedure
11
(k) ko
However, if the mean value is computed by

(n+1)y= <£>¢<ik> (40)

this leads to a quite different result:

(n+1)=<

ne+ 1= (39)

2
= (no + 1)IdW<l —k—o+(F0)+ >
=+ DA +f+f,+) (41)

The effect of the higher orders of f; in eqn (41) is
small for low »n and high m. Otherwise, there can
be a considerable difference by calculating the

Table 1(a). Standard deviations for a simulation of n-values
calculated by a linear regression of 10 values at each of the
5 loading rates

m/n 10 20 30 40 50 60 70 80 90 100

10 0494 220 544

15 0328 143 338 634 108

200 0245 106 248 45 738112

25 0196 0-847 197 358 574 851 120 164

mean value of different series of measurements
according to eqn (39) or eqn (40). In Table 1b this
is shown for the case of ten experiments at each of
the five loading rates. The » values, which one has
to expect, exceed the true values #, by up to 3-5%
for a standard deviation below 20% (An/n < 0-2).
Thus it is obvious that eqn (39) is much more
appropriate to obtain the true value of n,.

3.3 Concluding remarks

The main result of this section is that (k) gives the
true value of k; (and so do all other evaluation
procedures presented later). The crucial point for
any evaluation procedure is the accuracy of the
standard deviation, which is inversely dependent
on mx and thus on the Weibull modulus m. The
standard deviation An is in a first approximation
proportional to (n, + 1)%/m., where n, is the true
value of the crack-extension parameter. To get a
sufficiently precise result for the standard devia-
tion, the higher orders have to be included, see
eqn (33). If for one material more n values of
different sets of experiments are available, one has
to compute the mean value of » from the slopes of
the linear regressions, as proposed in eqn (39), to
get the correct result.

4 Linear Regression of the Mean Values at
Each loading rate

Now another possibility to evaluate the bending
strength values to compute the crack-extension
parameter n is investigated. The evaluation pro-
cedure proposed for the CEN standard is to test
ten spectmens at five loading rates. A linear re-
gression of the mean values at each loading rate
is performed, thus resulting in a slope k. From

Table 1(b). Mean value according to eqn (40) for a simula-
tion of n-values calculated by linear regression of 10 values at
each of the 5 loading rates

m/n 10 20 30 40 50 o0 70 80 90 100

10 1002 202 308

15 1001 201 304 409 518

200 1000 20-1 302 405 510 617

25 1000 200 301 403 506 611 71-8 827
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this slope, the crack-extension parameter n can be
obtained, according to eqn (9). If this procedure
is repeated, the statistical distribution of n can be
investigated.

Due to this evaluation procedure, the slope of
the linear regression is now

N—1 M 1

Kp) = ko + 3 cglog (T yzps) (42
B=0 j=1

in contrast to eqn (19). The coeflicients ¢,z are now

described by

_6(N—-1-2PB)
@SN )

Here again the sum of the coefficients over B is
zZero.

Because this equation could not be solved in an
analogous way to the procedure presented in
Section 3, a numerical simulation was performed.
From eqn (12) a discrete random distribution of
strength values oy; for a certain scale parameter oy
can be calculated by letting Py be a random
number between 0 and 1. The index B denotes
the number of different loading rates and j the
number of tests at one loading rate (N = 5 and
M = 10 for the proposed standardization proce-
dure):

Ty = UB(—% ln(l—PBj)) B=0,..,N-1

j=1L ..M (44
In practice, only the Weibull modulus m of the
inert strength is known. Hence, in this calculation
the crack-extension parameter » and the Weibull
modulus m were varied, and m. follows from eqn
(14). The crack-extension parameter » is running
from 10 to 100 and m from 10 to 25. For each
combination of » and m one million n values were
calculated, which corresponds to one million tests
to determine the crack velocity according to the

"
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Fig. 1. Distribution function f(n) calculated by the method

proposed for the CEN standard for m = 10 and »n = 30, 50,

70 (from left to right). Ordinate: number of n values in an
interval with a spacing of one for 10° simulated tests.

Table 2. Standard deviations for a simulation of n-values
calculated by using the procedure proposed for the CEN-
standard

m/n 10 20 30 40 50 60 70 80 90 100

10 0472 208 507

15 0318 138 324 604 101

20 0240 104 241 442 714 108 156

25 0193 0830 192 350 557 828 117 158

proposed method. The deviation from the true
value is henceforth in a rough estimation of the
order 1073

The distribution function f{n) is shown in Fig. 1
for m = 10 and #» = 30, 50 and 70 (from left to
right). This illustrates the increase in the width
and decrease in height with increasing n. It is a
consequence of the fact that the slope of higher n
values is closer to zero, therefore a small variation
results in a higher uncertainty and thus a wider
distribution as already mentioned.

The result of the Monte-Carlo simulation for
the standard deviation is shown in Table 2. If one
accepts a standard deviation of about 20% of »n as
tolerable, one can see that the limiting range of
the applicability of the method is n = 30 for
m=10,n =50 for m = 15, n = 70 for m = 20 and
reaches n = 80 for m = 25. The standard deviation
is a function of n, and m; the dependence is in a
first approximation proportional to (n, + 1)¥m.
(and thus (n, + 1)(ny, — 2)/m), which 1s equal to the
result in Section 3.

Figure 2 shows the percentage increase in the
standard deviation with increasing n for m = 10
(dashed line) and m = 20 (solid line). From this
diagram the strong dependence of the standard
deviation on both # and m is clearly visible.

For n higher than the calculated values given in
Table 2 the standard deviations exceed the 20%

fordar o

3

17 20 ac 49 bt 60 70

Fig. 2. Relative standard deviation An/n in percent using the
procedure proposed for the CEN-standard. Upper and lower
dashed line: for an inert Weibull modulus of m = 10, upper
and lower solid line: for an inert Weibull modulus of m = 20.
Central solid line: mean value of n according to eqn (39).
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limit and are thus too large to define a useful
crack extension parameter value. It should be
noted that this is only an effect caused by the
Weibull distribution of the bending strength
values and not including any experimental diffi-
culties. Even with the best technical equipment,
the standard deviation cannot be smaller than the
given value.

As a conclusion it is evident that the Weibull
modulus m should be known for estimating the
limit to which the crack extension parameter »
should be determined by four-point-bending.

5 Improved Mathematical Procedures

Instead of choosing the mean value of the mea-
sured values at each loading rate, one can choose
the median value, ;.4 5, by

Omed g ~ l/2(0]35 + 0'56) (45)

where oy is the fifth and og, the sixth measured
value after having sorted the ten measured bend-
ing strength values at each loading rate in ascend-
ing order. This has been discussed by the DIN
working group for standardization.”> Unfor-
tunately, it turns out that this procedure is not an
improvement, see Table 3. It was expected that
taking the median instead of the mean values is
less sensitive to scattering. But the mean values
give a better approximation to the true value of
and a smaller standard deviation than the median
values.

Another possibility, which was investigated, is
to calculate all 10° possible regression lines from
the ten measured values at five different loading
rates. The slopes of these regression fits can be
looked at as a set, which can be evaluated by
computing its mean value according to eqn (39).
A statistical analysis is very computer-time con-
suming, because 10° regression lines have to be
calculated just for one simulated experiment. In
the numerical calculations, it turned out that using
the median value of these 10° regression lines
instead of the mean value is the better approxi-
mation. However, both methods have a higher
standard deviation than the evaluation method
proposed for the CEN standard.

Table 3. Standard deviations for a simulation of r-values
calculated by an evaluation procedure using median values

m/n 10 20 30 40 50 60 70 80 90 100

5.1 Linear regression of the scale parameters

The main goal is to find the best-suited evaluation
method. Although this was not achieved in full
generality, a better evaluation procedure than the
one proposed for the CEN standard is presented,
which needs only slightly more computational
effort. The Weibull distribution suggests that one
could obtain a promising evaluation procedure by
‘correcting’ the mean values at each loading rate.
Hence, the scale parameter, which is obtained by
the maximume-likelihood method, is referred to as

o _ (% 1 (O' )m*)l/m* (46)
sc.B 5 M B
where M is the number of tests at a loading rate.
It can be looked at as a “Weibull-motivated mean
value’. The crack-extension parameter # is obtained
by the usual regression fit of the scale parameters.

This method has two advantages: firstly, the
standard deviation is smaller than that of the
method proposed for the CEN standard. The
Monte-Carlo simulation in Table 4 shows the
standard deviations for the most interesting case
of ten experiments at five different loading rates
as proposed for the CEN standard. This proce-
dure improves the range in which one can deter-
mine » values. In practice, however, only the inert
modulus m is known in advance, and not m..
Then one should calculate the first approximate
n value by inserting m into eqn (46). With the
obtained n, m. follows by eqn (14). With this #.,
a new value for n is obtained by eqn (46). The
procedure converges very fast. A simulation with
two iterations starting from m shows no difference
compared to the results obtained by using m.
from the beginning.

Secondly, the standard deviation can be analyti-
cally solved, analogously to the procedure out-
lined in Section 3. Due to this appealing property,
one can calculate the number of specimens, which
has to be tested to reach a certain accuracy.

The slope of the linear regression for this evalu-
ation method is given by:

N-1 Mo \um.
x() = ko + 3 ¢ log (3 ;e8] @D
B=0 =1

— g
—~—

u(p)

Table 4. Standard deviations for a simulation of s-values
calculated by the scale parameter of 10 values at each of the
5 loading rates

m/n 10 20 30 40 50 60 70 80 90 100

10 0532 238 600

15 0352 1-54 365 693

20 0264 115 267 494 808 124

25 0211 0912 212 386 623 928 132 183

10 0394 173 414 798

15 0262 113 265 490 799 123

20 0-196 0-848 196 358 572 849120 164

25 0157 0676 156 2-83 4-50 659 9-17 123 160 206
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The coefficients c; are then

_6(N—-1-2PB)

Comparing eqns (47) and (48) with eqns (19) to
(25), the procedure to compute the expectation
value of k 1s straightforward:

(k) = ko + J dWu(p) (49)

To calculate the expectation value of &, one has to
evaluate the integral:

j dWu(p) = %*23' ¢ J dW log (—IA/—[ (2 p'[};)) (50)
J

N "
—

F

Let us now proceed with F, which is identical to
Fg for all B

N-1M
' 1 m* m*
FEFB:J [T I1 doaP'(pui) IOgM (pgi + -+ pgw)
a=0 =1

(5D

Because all B are equal, it is possible to set g = |
without loss of generality. Then for the integral
one obtains:

N-1 M
F :J [T dpakP (Poi)
a=1 j=1

— e’
e

1

lw
XJ [1 dpoP'(po) log 1\1_/1 (por+ - + powr) (52)

=1

By substituting x; = p/"» the integral thus simplifies
to

M

F___'[ H dx,- oMY log ]%(xl 4+ o+ XM) (53)
i=1

Now the number of integrals which have to be

solved can be reduced to one by the following

coordinate transformation:

X =V

Xm-1 =Y (54)
Xyt Xy =Yy

With the abbreviation y = y,, thus follows:
F :J del J Ay, ldy Y e log L (55)
0 M
ity <1
>0

The integrals in the brackets are determined by
replacing log y/M — 1 in eqn (53) and (55), since
the relation holds for arbitrary integrands. The
integrals in the brackets thus evaluate to 1/T'(M).

Hence, the solution arrived at is

= L ) ey In 2

F= ¥ on(n 10)J0 dy y* e In 47
1T
—(Tnl—m(r—(m —In M) (36)

Corresponding to the evaluation methods outlined
in the foregoing sections, and taking into account
that the sum over B of ¢4 is zero, the expectation
value of k, (k), gives the true value kg

_ 1 (M) _
<k>—k0+m % CB (W_ lnM)—k() (57)

—— e

The standard deviation can be calculated analo-
gously to eqn (29) by

2 — 2\ — 1
(AK) = (u(p)’) = (1 107

X J dW(ln g 7:? yg“)(ln %/‘17 Pb"*)

_
= {mein 107 & 6 2

- o (e |

(M) (M) \T(M)
i’ Y (58)

Up to now, one can state that the following two
conditions are fulfilled: (k) gives the true value k,
and one can analytically compute the standard devia-
tion. In other words, the evaluation method pro-
duces k values, distributed around the true value k:

(k) =kq

(Ak) = T 12

I TR S S B S
#2(1In 10)2 % %= IO NV =) )

5.2 Standard deviation of the crack-extension
parameter n

The calculation is performed analogously to Section
3 and the foregoing section. That is why only the
results are presented. The standard deviation of n is
obtamed by

(An)?=((n+1)") = (n+1)*
= (g + 1 (fo+ 3fa— f3 +5f6 = 2 fu+ =) (60)

where the factors f; up to / = 6 are now given by
[\ _( Mot )2 2
% <(k) > (m* o) & @™
(9= (e
Js <(k) > (m* In10
Xz(03(74-312+4TT3+67272)+3CI§T§)
B
_ {8\ _ 1y +1 )6
Jo <(k) > (m* In10

XY (a(cg) +15b(czcz)+20f(c3)*+90g(c3)*)
P (61)
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with the coefficients a to g:
a=1571,+ 2077 — 18077 +1571, — 12077,
+3073 — — 107 + 6775 + 74
b=1(671,+4r, =313+ 7,)
[=40977 +6rrymy + )

_7
g=7 (62)
The factors 7, are given by the following equa-

tion:

1577,

=3 ()0 rad (00 fan w0 (63

where T'” denotes the ith derivative of the gamma
function.

The main result of this section is that it is possible
to calculate the number of loading rates N and the
number of tests M at each loading rate to obtain a
given accuracy. If one is interested only in a rough
estimation, one should just use the first approxi-
mation,

(”0+1)

" . (n 10) (Z(” 2))1/2

(ny+1DA(m)'? 12 12
"~ m.(In 10) (N(Nz—l)) (©4)

which provides an accuracy

An(approx.) — An(Monte-Carlo)

An(Monte-Carlo)

of 17% in the worst case for a standard deviation
An smaller than 20% of n (An/n < 0-2).

6 Different Experimental Procedures

The most effective way to essentially increase the
accuracy is to test more specimens. If the number
of loading rates is increased to six, one needs ten
additional tests, but they last ten times longer. On
the other hand, if the number of tests at a certain
loading rate is increased to 15, 25 additional bend-
ing strength tests have to be performed. These
additional tests are less time consuming, but need
more preparation work for the higher number of
specimens.

In fact, both variants are nearly equal. Testing
at more loading rates is only slightly better and
reduces the standard deviation in comparison to
testing at five loading rates by a factor of about
0-75, testing 15 instead of 10 specimens at one
loading rate by a factor of about 0-8, both evalu-
ated using the method of the scale parameters.

The authors want to point out that the knowl-
edge of the Weibull modulus is a necessary condi-

tion to estimate the reliability of determining »
values. When a new material is produced, the
Weibull modulus of the ceramic of course is not
known in advance. Then it is recommended that
the Weibull modulus m of the inert strength is
obtained by performing 30 tests at a loading rate,
high enough to provide from crack extension.
This was shown to be a reasonable number of
tests to get a sufficiently exact value for the
Weibull modulus.’*> With this Weibull modulus,
the number of tests and loading rates respectively
can be calculated, which is necessary to obtain a
certain accuracy. Then these tests have to be
performed at loading rates chosen in the way that
the mean bending strength values show a decrease
and keep off the plateau region of the inert
strength values.

7 Conclusion

There exists a certain upper bound for the n value,
dependent the Weibull modulus m, below which
reliable results for » can be obtained by four-
point-bending tests. It is possible to shift this
upper bound to higher values and thus to enlarge
the range of reliable results by the new evaluation
procedure proposed. This evaluation needs only
slightly more computational effort.

If the n values are outside the limited range of
applicability, i.e. they are higher than the upper
bound, with the new evaluation procedure an
increased number of specimens has to be tested.
The number of specimens necessary, to obtain a
certain accuracy can be computed according to
eqn (60) to (63). High »n values in combination
with a low Weibull modulus m are questionable
and only reliable if an extensive amount of
specimens is tested. Because of the high standard
deviation the lifetime calculations can lead to
extremely different results for this case.

If the Weibull modulus is not known, it is recom-
mended that 30 tests are performed at a very high
loading rate to determine m of the inert strength.
With the knowledge of m, one knows the theoreti-
cally lowest margin of error of n for a certain
number of tests at a certain number of loading
rates.
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