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Abstract 

The uncertainty in the determination o f  the exponent 
n in the equation o f  the subcritical crack velocity 
from four-point-bending experiments is investigated 
with respect to different evaluation methods. I f  the 
bending strength values are Weibull distributed, and 
the crack-extension parameter n is calculated by 
linear regression o f  the bending strength values o f  a 
number o f  experiments at different loading rates, an 
analytical solution can be given for the mean value 
and the standard deviation. It turns out that both 
the mean value and the standard deviation depend 
on the Weibull modulus m and the true value n o. 
The analytical solution illustrates the essential 
features o f  this dependence on m and no. For other 
evaluation methods, e.g. the one proposed as the 
CEN standard, this dependence is investigated by a 
Monte-Carlo simulation Jor different crack-exten- 
sion parameters n o and different Weibull moduli m. 
The standard deviation, which is calculated, is the 
theoretical lowest limit for  certain evaluation proce- 
dures. By this, the estimation o f  the margin o f  error 
is put on a ,firm ground. Since the standard devia- 
tion increases with n o, there is only a limited range 
in which n can be determined by four point-bending 
tests. A new evaluation method, which gives a better 
approximation than the method proposed as the 
CEN standard, is presented. The computational 
effort o f  this evaluation method is only slightly 
larger. It fitrthermore allows the number o f  experi- 
ments to be analytically calculated, which is neces- 
sary to obtain a certain accuracy. 

Die Unsicherheit in der Bestimmung des Exponenten 
n in der Gleichung der unterkritischen Riflausbreitung 
aus Vier-Punkt-Biegeversuchen wird bei verschiedenen 
Auswertemethoden untersucht. Falls die Biegefestig- 
keitswerte Weibull-verteilt sind und der Riflaus- 
breitungsparameter n durch lineare Regression der 
Biegefestigkeitswerte einer Anzahl von Versuchen 

bei verschiedenen Lastraten bestimmt wird, kann 
eine analytische LOsung for den Mittelwert und die 
Standardabweichung angegeben werden. Es stellt 
sich heraus, daft sowohl der Mittelwert als auch die 
Standardabweichung vom Weibull-Modul m u n d  
vom urspriinglichen Wert n o abhangen. Die analy- 
tische L6sung verdeutlicht die wesentlichen Zusam- 
menhiinge. Far andere Auswertemethoden, wie z. B. 
die als CEN-Standard vorgeschlagene, wurde diese 
Abhgingigkeit for  verschiedene Riflausbreitungs- 
parameter n o und verschiedene Weibull-Moduli m 
mit einer Monte-Carlo-Simulation untersucht. Die 
berechnete Standardabweichung ist die theoretische 
untere Grenze ffir ein bestimmtes Auswerteverfahren. 
Damit wird die Fehlerabschdtzung auf  eine solide 
Basis gestellt. Da die Standardabweichung mit n o 
ansteigt, gibt es nur einen eingeschriinkten Bereich, 
in dem n-Werte aus Vier-Punkt-Biegeversuchen 
bestimmt werden kOnnen. Eine Auswertemethode 
wird vorgestellt, die eine bessere Naherung ist, als 
die far den CEN-Standard vorgeschlagene, und 
nur geringf~igig hOheren RechenauJivand erfordert. 
Diese erlaubt weiters eine analytische Berechnung 
der Anzahl yon Versuchen, die notwendig ist, um eine 
bestimmte vorgegebene Genauigkeit zu erreiehen. 

509 

On Otudi l'incertitude sur la dOterm&ation de 
l'exposant n de l'kquation de vitesse de propagation 
des fissures sous-critiques utiliske dans les tests en 
quatre points ceci en fonction des mOthodes d'Ovalua- 
tion employ(es. Si la rOsistance ~ la flexion suit une 
loi de distribution de Weibull, et que le paramktre n 
d'extension de la fissure est calculk par rdgression 
lin(aire g~ partir de valeurs de rOsistance d la 
flexion issues de plusieurs expOriences effectuOes 
des vitesses de chargement diffdrentes, il est possible 
de donner une expression analytique de la valeur 
moyenne et de l'dcart-type. En fait, aussi bien la 
valeur moyenne que l'~cart-type dkpendent du 
module de Weibull m e t  de no. La solution analytique 
donne les caractkristiques essentielles de cette 
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d~pendance en m et n 0. Pour d'autres mkthodes 
d'kvaluation, i.e. celle proposke comme standard 
CEN, on Otudie cette dkpendance par simulation 
de type Monte-Carlo pour diffkrents paramOtres 
d'extension de la fissure n 0, et diffkrents modules de 
Weibull m. L'kcart-type que nous calculons est la 
limite infkrieure thkorique pour certaines prockdures 
d~valuation. On peut ainsi fonder l'estimation de 
l'erreur sur une base sftre. L'Ocart-type augmentant 
avec n 0, n ne peut dtre dOtermink par des tests en 
quatre-points que dans une certaine fourchette. On 
prOsente une nouvelle mkthode d~valuation qui 
fournit une approximation meilleure que celle du 
standard CEN. Cette mkthode d~valuation ne 
rkclame qu'un lOger supplkment de calcul informa- 
tique. De plus, il permet de calculer analytiquement 
le nombre d'expOriences nkcessaires pour obtenir 
une prkcision donnke. 

I Introduction 

The strength of ceramics mainly depends on the 
length of  cracks and pores, which are present in 
the volume or on the surface of the material. In 
most ceramics, these cracks extend at room tem- 
perature in a corrosive atmosphere (e.g. water 
vapour). If a is the crack length and K I the stress- 
intensity factor in fracture mode L the dependence 
of the velocity of the crack extension a is usually 
described by the power law 

a(t) = AKI(t) "o (1) 

where the dependence on the K factor is due to 
the breaking of  stretched bonds at the crack tip. I 
It has been observed that the power law is able to 
describe the crack extension in ceramics in a wide 
range of  loading rates and in different environ- 
ments. 2 Because the lifetime of  a ceramic is limited 
by these two parameters A and no, their deter- 
mination is of particular interest. A common way 
to determine the crack-extension parameters is to 
perform bending tests at different loading rates. 

In recent years the European Committee for 
Standardization (CEN) and the German Institute 
for Standardization (DIN) have made great efforts 
to develop standardized testing methods for 
ceramics, e.g. the testing of bending strength 3 and 
fracture toughness. 4 A proposal for the determina- 
tion of  the crack-extension parameters by four- 
point-bending tests has been worked out. 5 

In this work the dependence of the crack-exten- 
sion parameter n, which denotes the crack-extension 
parameter obtained by a number of Weibull-dis- 
tributed bending strength values, on the Weibull 
modulus m and on the true value no is analytically 
given for the case of a linear regression of  the 

measured values at different loading rates. From 
these equations the main features can be seenl For 
the evaluation proposed as the CEN standard (as 
well as for other possibilities of  evaluation), the 
dependence is tested by a Monte-Carlo simula- 
tion, which, if no analytical solution can be found, 
is commonly used to compare different evaluation 
methods (e.g. the bending strength of ceramics by 
Steen et a/.6). 

It is shown that four-point-bending tests have 
only a limited applicability to determine the crack- 
extension parameter n. Only taking into account 
that the measured values are Weibull-distributed 
at each loading rate, the margin of  error increases 
with increasing n and decreases with increasing m. 
In this work the limit is set to be 20%. This is 
confirmed by the CEN standard draft, 5 where a 
typical error of the linear regression procedure of 
20% is seen as an acceptable limit. A standard 
deviation of more than 20% is seen as impractic- 
able, because such ill-defined values lead to ex- 
tremely different results in lifetime calculations. 7 
In particular, n values above 100, which are ob- 
tained for materials such as RSiC, 8 are question- 
able, if only fifty specimens (which is prescribed 
by the CEN standard) are tested. The CEN 
standard draft 5 states that the procedure should 
only be used for n values lower than 80. The 
calculations in this paper, however, show that the 
limit is dependent on the Weibull modulus m and 
may be much less (e.g. 30 for m = 10, see Section 4). 

A better mathematical evaluation procedure is 
presented in Section 5. On the one hand, this 
procedure allows the range to be extended, in 
which n can be determined by four-point-bending 
tests with respect to the limit already stated; on 
the other hand this evaluation procedure allows 
the number of experiments, which is required to 
obtain a certain given accuracy, to be calculated 
in advance. 

2 Theoretical Background 

The following two assumptions have to be made: 
firstly, the crack velocity obeys a power law, see 
eqn (1), with constant n 0. If n o varies due to differ- 
ent failure mechanisms, such as subcritical crack 
extension due to a viscoelastic behaviour of the 
second phase 9 or pore growth, 1° only that regime 
in which no is constant should be regarded for 
further evaluation. 

If the dependence of the K factor on the applied 
time-dependent stress At) is defined by 

Kz(t) = ~ t )  yal/2(t) (2) 

with Y being a geometry-dependent factor and a 
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the crack length, the second assumpt ion is that  a 
critical stress-intensity factor exists, 

K m -- s(t) Yal/2(t) (3) 

where s is the ( t ime-dependent)  defect strength. At 
the time of  fracture tf, o(tO and s(tO coincide, 
o'(tO = s(tO, or likewise Kl(t) = Kin. For  a power 
law dependence of the subcritical crack extension, 
one obtains ~l 

( B1 I 0, _'vl"°2) s(t) = s",,-2(0) - dt' o~0(t')) 

B is related to the factor A f rom eqn (1) by 
2 

B - AY~-(n0 - 2) K~c"° 

(4) 

(5) 

The defect strength at time t = 0, s(0), is com- 
monly  denoted as the inert strength. Equat ion  (4) 
can be solved analytically for a constant  stress 
rate alt)  = d-t. Thus  the well-known relation for 
the bending strength at the fracture time tf results: 

~°+l(tO = (no + 1)6.B(s n° 2(0) - s n° 2(tf)) (6) 

The second term on the right hand  side is usually 
omitted.  This is valid only if subcritical crack 
growth leads to a decrease of  the defect strength 
at t ime tf. In this case, the term representing the 
inert strength dominates  by far the one of the 
defect strength at the time tf, because at room tem- 
perature n o is very high in most  of the ceramics. 
Hence eqn (6) is simplified: 

1 
log ~(tr) n o + 1 log 6 + const. (7) 

F rom eqn (7) the crack extension parameter  no is 
obtained in a simple way by plott ing the loga- 
r i thm of  the bending strength values versus the 
logari thm of  the loading rates. In such a d iagram 
no and the slope k0 of  a regression line of  the 
bending strength values are related by 

1 
no - k0 1 (8) 

The following discussion is restricted to the case 
where measured data  for the crack extension 
parameter  obey the simplified equat ions already 
stated. This means that  all measured data  decrease 
with decreasing loading rate and keep off the 
plateau region of  the inert strength. 

It was now proposed  for the C E N  standard that  
tests have to be performed at five loading rates, 
each differing by one order of  magnitude.  For  
each of  these loading rates ten tests are required. 
The mean  value of these experiments is used for a 
linear regression fit. The crack-extension parameter  
n is then given analogously to eqn (8), 

1 
n = £: - 1 (9) 

with k being the fitted slope of the regression line. 

F rom now on n and k are the crack-extension 
parameters obtained by measurements  and the 
respective evaluation procedure,  while no and k 0 
are the true values. 

F r o m  this point  of  view, it is by no means clear 
that  n and n o are identical. If  the measured values 
are Weibull-distributed at each loading rate, the 
margin of  error of n increases with decreasing 
Weibull modulus  m. Fur thermore ,  the slope k of  
higher n values is closer to zero, see eqn (9). F rom 
this non-linear relationship a statistical deviation 
in the measurement  of k, which is inevitable be- 
cause of  the inherent properties of ceramics due to 
statistical failure, leads to a higher uncertainty for 
high n than for small n. Therefore the experi- 
mental ly determined crack-extension parameter  n 
is dependent  on both the Weibull modulus  m and 
the true value n0! 

It is now supposed that  the failure probabili ty 
of the inert strength obeys a two-parametr ic  
Weibull law with scale parameter  o-~n and Weibull 
modulus  m: 

Pt = 1 - exp [ -  (s(O)/O'm)" ] (1 O) 

The mean inert strength ~n is related to the scale 
parameter  o-~n of  the inert strength by 

#in=o'mF(1 + 1 )  (11) 

Usually tests are carried out at a high loading rate 
to provide f rom crack extension. If crack exten- 
sion occurs, another  Weibull distr ibution with a 
loading rate dependent  scale parameter  ~r~ and 
another  Weibull modulus  m, develops f rom the 
original distribution: 

Pr--  1 - exp [-(~(tf) /o-y ' , ]  (12) 

Now eqn (6) is rewritten for a certain loading rate 

o~'°+l(tO = (no + 1)6-~Bs n° 2(0) (13) 

Inserting eqn (13) into eqn (10) and compar ing  
with eqn (12), the parameters  m, and o-~ thus are 
related to the true Weibull modulus  m and the 
inert scale parameter  o- m by 

0"~ = O~inn o 2)/(n°+l)((?l 0 + 1)B6.#)l//n0 +ll (14) 

no + 1 
m , = m - -  

n o - -  2 

F r o m  this equat ion the loading rate dependence 
of  the scale parameter  o-~ follows: 

1 
log o-/3 - no + 1 log 6-13 + const. (15) 

If  the Weibull modulus  m is known,  the loading 
rate dependent  probabili ty function is now given 
by eqn (12), with m, related to m by eqn (14). 



512 H. Peterlik 

3 Linear Regression of All Measured Values 

A linear regression of  all measured values is now 
investigated, because an analytical solution can be 
found for this case. F r o m  this solution one can 
unders tand the essential features, i.e. the depen- 
dence of  n on m and n 0. 

Now experiments are carried out at N loading 
rates, each differing by one order of  magnitude.  
They are described by the parameter  /3 running 
from 0 to N - 1 .  Without  loss of  generality, the 
highest loading rate ~ can be normalized to one 
as well as the highest scale parameter  o-¢. It can 
be shown that  the slope of  a linear regression is 
unchanged by this procedure.  The reason being is 
that  in general a multiplication with an arbitrary 
value leads only to a shift in a diagram of  loga- 
rithmic stresses versus logarithmic loading rates. 
Then the scale parameters  and the loading rates 
have the simple form: 

xt~ = log ~ = - / 3  /3 = 0 . . . N - 1  

/3 
y¢ = log o- 8 - n o + 1 (16) 

Therefore, in the following sections, eqn (16) is 
used for the definition of  the loading rates and the 
scale parameter.  The slope of  a regression line K 
is obtained by collecting x - (xt~), etc., with (z) = 
1/N Eff2~ z,: 

(xy) - (x)(y) (17) 
K = (x2) _(x)2 

Inserting non-normalized values into this equat ion 
leads to the same slope as normalized values. 

3.1 Expectation value and standard deviation of the 
slope k 
Through  experimental measurements  one obtains 
a set of  strength values o-,j for N different loading 
rates, being labelled by/3, each of  the sets consist- 
ing of  M values being a distr ibution dependent  on 
no and m,. Hence, /3  runs f rom 0 to N -  1, j f rom 1 
to M. It is useful to define parameters P~s, which 
are related to the strength values and the scale 
parameter  by 

°~s (18) 

Then the dependence on n o and k 0 respectively is 
explicit. By eqn (17) the slope of  a linear regres- 
sion of  all values can be calculated: 

N - 1  M 

K(Po, . . . .  , PN_l,M)=--K(p)=ko+ • Y~c~logp~j (19)  
[3=0 j = l  

Here the short -hand nota t ion (p~fi - p was intro- 
duced. The coefficients ct~ are given by: 

6 ( N -  1 - 2/3) (20) 
c~ = MN(N2 _ I ) 

An immediate  consequence of  this definition is 
N - I  

Y~ c~ = 0 (21) 
3=0 

Equat ion (19) is rewritten as: 

K(P) = ko + u(p) (22) 

The variables p~j obey individual Weibull distri- 
butions eqn (12). Hence expectation values of  
measurements  are predicted as integrations with 
measure 

d W = I-[ dp~jP'(p~j) (23) 
3,J 

If k denotes the outcome of  a single measurement  
of  K(p), the corresponding distribution function is 
given by 

f ( k )  = I I-[ dp~jP'(p~j) 6(K(p) - k) (24) 
34 

dW 

It can be shown that  the expectation value of  K(P) 
is the true value k 0. The expectation value of  k is 
then obtained by integration: 

( k ) =  I dk kf(k) = I d W  k I dk ~(K(P) - k) 

= j d WK(p) = ko + (u) 

= k 0 + ~ 2 ~  d W l n p e j  (25) 
J 

The factor In 10 arises because of  the change from 
decadic to natural  logarithms. By this, the integral 
can be solved analytically: 

I d W l n  p~j = So dpm.pm'-le-~O"lnp 
s 

P'(p) 

_ 1 So d y e  - v l n v -  Y (26) 
m ,  m ,  

for al l /3 and j. The fact that  the integral over all 
variables P~i ~ Pej gives unity was used here. The 
number  in the term on the r ight-hand side is 
Euler 's gamma,  y ~ 0.577216. Thus  the expecta- 
t ion value of  k turns out to be: 

Y 
(k) = k0 ]~ 5-', e¢ = k 0 (27) 

m,(ln 10) j 

0 

as already stated. Therefore the expectation value 
of  the slope of  the linear regression gives the true 
value k 0. This means that  the measured values of 
the slopes are distributed a round the true value k0, 
which is a satisfactory result for the evaluation 
procedure.  

Let us now proceed with the second impor tant  
parameter ,  the s tandard deviation. It is a measure 
for the accuracy of  the evaluation procedure and 



Subcritical crack growth parameter evaluation procedures 513 

obtained by taking the square root of the variance 
(Ak):: 

( A k )  2 = (k 2) - t k )  2 = {k 0 + 2ko u + u 2 - k 2) 

= 2k0iu) + {u 2) = (u 2) (28) 

0 

By this, the standard deviation of k is simply the 
square root of (u2). The procedure to compute lu z) 
is closely related to eqns (24) and (25): 

I (u) 2 (lnl0)2B~i ~ . ,  d W l n p ~ j l n p ~ i  (29) 

In the case/3; -- od the integral can be expressed in 
terms of the second derivative of the Gamma 
function F(z) with respect to z at z = 1, otherwise 
the integral is given by the square of eqn (26). 
Thus it follows 

1 ~2 _[_ a~jaet i (30) d W In PI3J In P~i = m~** ~ -  

6 being the Kronecker  symbol. Inserting eqn (30) 
into eqn (29), it is found for the variance of k that 

¢F l 
(Ak)2 - ~ (c~) 2 

6 m~ (In 10)  2 /3,j 

1 1 
: 2 ~  (31) 

m, 2 (In 10)  2 M N ( N  2 - 1) 

From this equation the standard deviation Ak can 
be calculated for an arbitrary number of tests M 
at an arbitrary number of loading rates N, the 
dependence on M and N being explicit. This is the 
theoretical lowest limit for the respective evalua- 
tion procedure and only a consequence of  the 
Weibull-distributed failure probability of ceramics. 
The standard deviation of k therefore is inversely 
proportional to m,, which is related to the true 
Weibull modulus m measured at a high loading 
rate by eqn (14). It should be noted that this rela- 
tion is valid for all other evaluation procedures 
presented in the following sections. To reduce the 
standard deviation, one has to increase the number 
of tests and/or the number of loading rates. 

3.2 Expectation value and standard deviation of the 
crack extension parameter n 
Unfortunately, the relation for the evaluation of 
in) is more difficult. The expectation value is 
obtained, if the same procedure as presented in 
Section 3.1 is applied, by 

1 
( (n+  1) 2)= (ko+u(p))  2 = d W ( k o + u ( p ) )  2 

= l ~ I  d W ( I +  3(~o)2+ 5(~o)4+ . . - ) ( 3 2 )  

The integrand was expanded into a series, which is 
only valid for lul < ko. Denoting ( ( u / k J )  = fl, the 
standard deviation is obtained using eqn (9): 

=(no + 1)2(1 + 3J~ + 5f4 + .-.) 

(n + 1)2 = ko + u(p) 

=(no+ 1)2(1 + 2f2 +f2 +- .  .) 

(An) 2 -- ((n + 1) 2 ) - tn + 1) 2 

= (no + 1)2(J~ + 3f4 - f ~  + 5J~, - 2j~J4 + . . . .  ) 
(33) 

From the last equation the variance and thus the 
standard deviation can be obtained up to sufficiently 
high accuracy. In practice, it is very tedious but 
straightforward to calculate the higher orders. 
Hence, J) was computed only up to 1 -- 6. This 
approximation was tested by a Monte-Carlo 
simulation described in Section 4. The accuracy 
((An(approx.) - An(Monte-Carlo))/An(Monte-Car]o)) 
was proven to be better than 2.5% in the regime 
where the standard deviation does not exceed 20% 
of n (An/n < 0.2). I f  one takes only the first term~ 
into consideration, which is obtained by a Oaus- 
sian propagation of errors, the accuracy of the 
approximation is below 20% in the worst case in 
the regime already described. 

To calculate the higher orders of the approxi- 
mation, an appropriate index symmetrization was 
imposed. The integral for the fourth order is then 

I d W In p~j In p~, In Pak In p~/ 

= ~,4 + y~,2(a/j  + aik + ail + a,~ + &./) 

+ ~iau¢~ + a,ka~, + aiAk) 
- (~'~'3 + 3~,2)(a!~k + aij~ + a,.k~ + a y )  

+ (~/4 - 3 y  ~ + 4~,-/3 + 6y~,2)a!j , /  (34) 

Here all combinatoric possibilities have to be taken 
into consideration. The symbol 8!jkt (and 8ok like- 
wise) introduced in eqn (34) has to be understood 
as being 8~k l = 1 for i = j  = k = l and 6~ik< = 0 other- 
wise. The coefficients % are obtained as derivations 
of the gamma function: 

d T ( z )  
Yl-  dfl :=1- (-1)IT/ (35) 

Taking eqn (21) into account, only two terms of 
the integral differ from zero. Therefore the term of 
the fourth order is thus reduced to 

f4 = k00 \m,  (In 10) 

×~,  (c4~)(y4 - 3 y  z + 4 y y  3 + 672y2) + 3c~y 2 (36) 
[3 

The number of the combinatoric possibilities in- 
creases very fast with l and the full solution of the 
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integral is quite complex. Hence, only the result 
for the sixth order  is given: 

n o + l  6 
f6 TM \ m ~ i n  10)] 

X ~  (a(c6~) + 15b(c4~c~)+ 20flc~) 2 + 90g(c~) 3) (37) 
13 

The coefficients were determined by the solution 
of  an appropriate  system of  equations: 

a = 15"ya~t2 + 20'y3~/3 -- 180~/2-/~ + 15"y2"y4 

- 120~/'y2"Y3 + 30-/~ - 15~/2~/4 

- 10~/~ + 6~'/5 + ~t6 

b = ~/2(6",/2~/2 + 4~/~/3 - 3"V~ + ~4) 

f = '/2(9,/2~/~ + 6"¢~/2"Y3 + ~ )  

g -  6 (38) 

In practice, only the Weibull modulus  m of  the 
inert strength is known,  which is related to m, by 
eqn (14). Hence, in all the following tables the 
dependence on the Weibull modulus  m of  the inert 
strength and not  on m, is given. This is done  
for practical reasons, because the inert modulus  m 
of  a material is usually known.  Thus,  one can 
directly see the minimal  s tandard deviation that  
can be obtained for a certain evaluation procedure. 

As an example, Table l a shows the s tandard 
deviation of n for the case of  ten experiments at 
five different loading rates, which is the proposed  
number  of  tests for the CEN standard,  calculated 
by the Monte  Carlo simulation. If  the s tandard 
deviation An exceeds 20% of  n, it is omit ted from 
Table l a, because it is seen as impracticable to use 
such ill-defined values for lifetime calculations. 

If  a number  of  experiments performed with the 
same material by different laboratories is avail- 
able, a mean value can be calculated. For  this 
calculation it is impor tant  to use the slopes k of  
the linear regressions and not  the n values. As can 
be seen by eqn (27), the true value results f rom the 
procedure 

1 1 
n0+ 1 ( k ) - k 0  (39) 

However,  if the mean value is computed  by 

(n + 1) = ~: (k~ 

this leads to a quite different result: 

( ' )  
( n +  1 )=  ko+u(p) 

I /  = ( n o + l )  d W  1 - ~ - o +  .-- tkol 
= (no + 1)(1 +f2  +f4 + " )  (41) 

The effect of  the higher orders o f f  in eqn (41) is 
small for low n and high m. Otherwise, there can 
be a considerable difference by calculating the 

Table l(a). Standard deviations for a simulation of  n-values 
calculated by a linear regression of  10 values at each of  the 

5 loading rates 

m/n 10 20 30 40 50 60 70 80 90 100 

10 0.494 2.20 5.44 
15 0.328 1.43 3.38 6.34 10.8 
20 0.245 1.06 2.48 4.56 7.38 11.2 
25 0.196 0-847 1.97 3 .58  5.74 8.51 12.0 16.4 

mean value of  different series of  measurements  
according to eqn (39) or eqn (40). In Table l b this 
is shown for the case of  ten experiments at each of  
the five loading rates. The n values, which one has 
to expect, exceed the true values n o by up to 3.5% 
for a s tandard deviation below 20% (An/n < 0.2). 
Thus  it is obvious that  eqn (39) is much  more  
appropriate  to obtain the true value of  n o . 

3.3 Concluding remarks 
The main result of  this section is that  (k) gives the 
true value of  k 0 (and so do all other  evaluation 
procedures presented later). The crucial point  for 
any evaluation procedure is the accuracy of  the 
s tandard deviation, which is inversely dependent  
on m, and thus on the Weibull modulus  m. The 
s tandard deviation An is in a first approximat ion 
propor t ional  to (no + 1)2/m,, where no is the true 
value of  the crack-extension parameter.  To get a 
sufficiently precise result for the s tandard devia- 
tion, the higher orders have to be included, see 
eqn (33). If  for one material more  n values of  
different sets of  experiments are available, one has 
to compute  the mean value of  n f rom the slopes of  
the linear regressions, as proposed in eqn (39), to 
get the correct result. 

4 Linear Regression of  the Mean Values at 
Each loading rate 

Now another  possibility to evaluate the bending 
strength values to compute  the crack-extension 
parameter  n is investigated. The evaluation pro- 
cedure proposed  for the C E N  standard is to test 
ten specimens at five loading rates. A linear re- 
gression of  the mean values at each loading rate 
is performed,  thus resulting in a slope k. F r o m  

Table l(b). Mean value according to eqn (40) for a simula- 
tion of  n-values calculated by linear regression of  10 values at 

each of  the 5 loading rates 

m/n 10 20 30 40 50 60 70 80 90 100 

10 10.02 20.2 30-8 
15 10.01 20.1 30,4 40-9 51.8 
20 10-00 20-1 30,2 40.5 51.0 61.7 
25 10.00 20-0 30.1  40.3 50.6 61-1 71-8 82-7 
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this slope, the crack-extension parameter  n can be 
obtained, according to eqn (9). If  this procedure 
is repeated, the statistical distribution of  n can be 
investigated. 

Due to this evaluation procedure, the slope of  
the linear regression is now 

K(p) = ko + ~, c/3 log ~ Oej (42) 
/3=0 = 

in contrast  to eqn (19). The coefficients c/3 are now 
described by 

6 ( N -  1 - 2/3) (43) 
c/3 -- N ( N  2 - 1) 

Here again the sum of the coefficients over /3 is 
zero. 

Because this equation could not be solved in an 
analogous way to the procedure presented in 
Section 3, a numerical simulation was performed. 
F rom eqn (12) a discrete random distribution of  
strength values c% for a certain scale parameter  o-~ 
can be calculated by letting P~j be a random 
number  between 0 and 1. The index /3 denotes 
the number  of  different loading rates and j the 
number  of  tests at one loading rate (N = 5 and 
M = 10 for the proposed standardization proce- 
dure): 

1 o-/3j n ~ , l n ( l - P C j )  /3 = 0 . . . .  , N - 1  
j = 1 . . . . .  M (44) 

In practice, only the Weibull modulus m of  the 
inert strength is known. Hence, in this calculation 
the crack-extension parameter  n and the Weibull 
modulus m were varied, and m, follows from eqn 
(14). The crack-extension parameter  n is running 
from 10 to 100 and m from 10 to 25. For  each 
combinat ion of  n and m one million n values were 
calculated, which corresponds to one million tests 
to determine the crack velocity according to the 

Table 2. S tandard  deviat ions for a s imulat ion of  n-values 
calculated by using the procedure  proposed for the CEN-  

s tandard  

m/n 10 20 30 40 50 60 70 80 90 100 

10 0.472 2.08 5.07 
15 0.318 1.38 3.24 6.04 10.1 
20 0.240 1.04 241 4-42 7.14 10.8 15.6 
25 0.193 0.830 1 ,92  3.50 5.57 8.28 11.7 15.8 

proposed method. The deviation from the true 
value is henceforth in a rough estimation of  the 
order 10 3. 

The distribution function fln) is shown in Fig. 1 
for m -- 10 and n = 30, 50 and 70 (from left to 
right). This illustrates the increase in the width 
and decrease in height with increasing n. It is a 
consequence of  the fact that the slope of  higher n 
values is closer to zero, therefore a small variation 
results in a higher uncertainty and thus a wider 
distribution as already mentioned. 

The result of  the Monte-Car lo  simulation for 
the standard deviation is shown in Table 2. If one 
accepts a standard deviation of  about  20% of  n as 
tolerable, one can see that the limiting range of  
the applicability of  the method is n -- 30 for 
m- -  10, n =  50 f o r m =  15, n = 7 0 f o r m  = 20 and 
reaches n = 80 for m = 25. The standard deviation 
is a function of  n o and m; the dependence is in a 
first approximation proport ional  to (n o + 1)Z/m, 
(and thus (n o + 1)(n 0 - 2)/rn), which is equal to the 
result in Section 3. 

Figure 2 shows the percentage increase in the 
standard deviation with increasing n for m = 10 
(dashed line) and m = 20 (solid line). F rom this 
diagram the strong dependence of  the standard 
deviation on both n and m is clearly visible. 

For  n higher than the calculated values given in 
Table 2 the standard deviations exceed the 20% 
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Fig. 1. Dis t r ibu t ion  funct ion f ( n )  calculated by the me thod  
proposed for the CE N  s tandard  for m = 10 and  n = 30, 50, 
70 (from left to right). Ordinate:  n u m b e r  of  n values in an  

interval  with a spacing of  one for 106 s imulated tests. 
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Fig. 2. Relative s tandard  deviat ion An/n in percent  using the 
procedure  proposed  for the CEN-s tanda rd .  Uppe r  and  lower 
dashed line: for an  inert  Weibul l  modu lus  of  m = 10, upper  
and  lower solid line: for an  inert  Weibull  modulus  of  m = 20. 

Centra l  solid line: mean  value of  n according to eqn (39). 
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limit and are thus too large to define a useful 
crack extension parameter value. It should be 
noted that this is only an effect caused by the 
Weibull distribution of the bending strength 
values and not including any experimental diffi- 
culties. Even with the best technical equipment, 
the standard deviation cannot be smaller than the 
given value. 

As a conclusion it is evident that the Weibull 
modulus m should be known for estimating the 
limit to which the crack extension parameter n 
should be determined by four-point-bending. 

5 Improved Mathematical Procedures 

Instead of choosing the mean value of the mea- 
sured values at each loading rate, one can choose 
the median value, O'med,/3 , by 

Ormed, fl = l/2(Orf15 + 0°/36) (45) 

where 00t~5 is the fifth and 00fie the sixth measured 
value after having sorted the ten measured bend- 
ing strength values at each loading rate in ascend- 
ing order. This has been discussed by the DIN 
working group for standardization. 12 Unfor- 
tunately, it turns out that this procedure is not an 
improvement, see Table 3. It was expected that 
taking the median instead of the mean values is 
less sensitive to scattering. But the mean values 
give a better approximation to the true value of no 
and a smaller standard deviation than the median 
values. 

Another possibility, which was investigated, is 
to calculate all 10 5 possible regression lines from 
the ten measured values at five different loading 
rates. The slopes of these regression fits can be 
looked at as a set, which can be evaluated by 
computing its mean value according to eqn (39). 
A statistical analysis is very computer-time con- 
suming, because 10 5 regression lines have to be 
calculated just for one simulated experiment. In 
the numerical calculations, it turned out that using 
the median value of these 10 5 regression lines 
instead of  the mean value is the better approxi- 
mation. However, both methods have a higher 
standard deviation than the evaluation method 
proposed for the CEN standard. 

Table 3. S tandard  deviat ions for a s imulat ion of  n-values 
calculated by an  evaluat ion procedure  using median values 

m/n 10 20 30 40 50 60 70 80 90 100 

10 0-532 2.38 6.00 
15 0.352 1.54 3.65 6.93 
20 0-264 1.15 2.67 4.94 8.08 12-4 
25 0.211 0-912 2-12 3-86 6.23 9-28 13-2 18.3 

5.1 Linear regression of the scale parameters 
The main goal is to find the best-suited evaluation 
method. Although this was not achieved in full 
generality, a better evaluation procedure than the 
one proposed for the CEN standard is presented, 
which needs only slightly more computational 
effort. The Weibull distribution suggests that one 
could obtain a promising evaluation procedure by 
'correcting' the mean values at each loading rate. 
Hence, the scale parameter, which is obtained by 
the maximum-likelihood method, is referred to as 

(j~: l l (00BJ)m*)Pm* (46) 

where M is the number of tests at a loading rate. 
It can be looked at as a 'Weibull-motivated mean 
value'. The crack-extension parameter n is obtained 
by the usual regression fit of  the scale parameters. 

This method has two advantages: firstly, the 
standard deviation is smaller than that of the 
method proposed for the CEN standard. The 
Monte-Carlo simulation in Table 4 shows the 
standard deviations for the most interesting case 
of  ten experiments at five different loading rates 
as proposed for the CEN standard. This proce- 
dure improves the range in which one can deter- 
mine n values. In practice, however, only the inert 
modulus m is known in advance, and not m,. 
Then one should calculate the first approximate 
n value by inserting m into eqn (46). With the 
obtained n, m, follows by eqn (14). With this m,, 
a new value for n is obtained by eqn (46). The 
procedure converges very fast. A simulation with 
two iterations starting from m shows no difference 
compared to the results obtained by using m, 
from the beginning. 

Secondly, the standard deviation can be analyti- 
cally solved, analogously to the procedure out- 
lined in Section 3. Due to this appealing property, 
one can calculate the number of specimens, which 
has to be tested to reach a certain accuracy. 

The slope of the linear regression for this evalu- 
ation method is given by: 

N-I (~-~ 1 ,~l/m, 
K(P) = k0 + ~ c~ log ~J--~ ~ flflflj~ ] (47) 

13=0 
J 

u(p) 

Table 4. S tandard  deviat ions for a s imulat ion of  n-values 
calculated by the scale pa ramete r  of  10 values at  each of  the 

5 loading rates 

m/n 10 20 30 40 50 60 70 80 90 100 

10 0.394 1 .73 4-14 7.98 
15 0.262 1 .13  2.65 4.90 7-99 12-3 
20 0.196 0-848 1.96 3-58 5-72 8,49 12.0 16.4 
25 0-157 0.676 1-56 2.83 4.50 6.59 9.17 12.3 16.0 20.6 
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The coefficients % are then 

6 ( N -  1 - 2/3) (48) 
ct~ = N(N 2 - 1)- 

Comparing eqns (47) and (48) with eqns (19) to 
(25), the procedure to compute the expectation 
value of  k is straightforward: 

(k) = ko + J d Wu(p) (49) 

To calculate the expectation value of k, one has to 
evaluate the integral: 

I dWu(p) = l , ~  c¢ I dWlog ( l  ( ?  p~;)) (50) 

F 

Let us now proceed with F, which is identical to 
F~ for all/3: 

IN -1 M ] m* 
F -  Ft~ = II 1-[ dp~kP'(po~) log ~ (Pt~l + "'" + P~t) 

a=0 i= 1 
(51) 

Because all/3 are equal, it is possible to set/3 -- 1 
without loss of generality. Then for the integral 
one obtains: 

fN 
-1 M 

F = [I H dp~kP'(po~) 
a=l i=1 

I 

I × ~ dpof'(Poi) log (p~l*+ ..- + po~t) (52) 
I "= I 

By substituting xj = p~'* the integral thus simplifies 
to 

f ~  1 ( X ~ + ' " + X M )  (53) F = d x  i e - ' , + + ' - )  log 

Now the number  of integrals which have to be 
solved can be reduced to one by the following 
coordinate transformation: 

X I  : Yl 

XM 1 = YM 1 (54) 

x l + "  + xM =yM 

With the abbreviation y = YM thus follows: 

F =  dyl""  d y M l d y y M l e - Y l o g - -  (55) 
o M 

Y~+"" +YM ~ < 1 

y i > O  

The integrals in the brackets are determined by 
replacing log y/M ---> 1 in eqn (53) and (55), since 
the relation holds for arbitrary integrands. The 
integrals in the brackets thus evaluate to 1/F(M). 

Hence, the solution arrived at is 

1 I ~ e_y y 
F -  F(M)(ln 10) J0 dy yM I In - -  M 

_ 1 {F'(M) in M) (56) 
(ln lO) W(M) 

Corresponding to the evaluation methods outlined 
in the foregoing sections, and taking into account 
that the sum over /3 of ct~ is zero, the expectation 
value of k, (k), gives the true value k0: 

1 y~ct~(F'(M) l n M ) = k  o (57) (k) k0 + 
m. (ln 10) ~ ~ F(M) 

~r 

The standard deviation can be calculated analo- 
gously to eqn (29) by 

1 ( Xk) 2 = ( u ( p )  2) - 
0n. In 10) 2 

, n l I d W ( l n ~ M  ~ M  

1 - ? (m, In 10) 2 y-" co ca 

rtr'(u) )2 ,,(M) 

(58) 

Up to now, one can state that the following two 
conditions are fulfilled: (k) gives the true value k0 
and one can analytically compute the standard devia- 
tion. In other words, the evaluation method pro- 
duces k values, distributed around the true value k0: 

(k) = k0 
T 2 T 2 12 

(Ak) 2 - m2(1 n 10)2 ~ c~ - m2(ln 10)2 N(N2 _ I) (59) 

5.2 Standard deviation of the crack-extension 
parameter n 
The calculation is performed analogously to Section 
3 and the foregoing section. That is why only the 
results are presented. The standard deviation of n is 
obtained by 
(An) 2 : ((n +1) 2) - (n +1) 2 

: (no + 1)2(f2 + 3f4 - f ~  + 5f6 - 2fzf4 + . . . .  ) (60) 
where the factors f~ up to l = 6 are now given by 

( ( k ) 2 )  = ( H0-+ 1 ~  2 , 
f2 = \m,  In 101 2 (cdz2) 

[(u]4/={ no+l ] 4 
A =  \\k] / ~,m, In 10] 

× Z ( 4 ( a -  3 ~+4~-%+6~z2)+ 3 c ~ )  
t~ 

( ( k ) 6 > : (  H o + l  ]6 
J6 = \m,  In 101 

× ~. (a(c~) + 15b(c~c~)+2OflcA)2+9Og(c~) 3) 
(61) 
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with the coefficients a to g: 

a : 157472 + 2072% - 18072~ +157274 - 120772% 

+ 30~2 - 157274 - 103 + 6775 + 76 

b = 72(67272 + 4773 - 3 ~  + 74) 

f =  'A(972~ + 677273 + 3)  

:2 
g -  6 (62) 

The factors 7t are given by the following equa- 
tion: 

/ i F(i)(M) , i 
i:0 ( F - ~ )  ](ln M)' ' (63) 

where F ~il denotes the ith derivative of the gamma 
function. 

The main result of this section is that it is possible 
to calculate the number of  loading rates N and the 
number of tests M at each loading rate to obtain a 
given accuracy. If one is interested only in a rough 
estimation, one should just use the first approxi- 
mation, 

(n0+l) 2 2 \1/2 
An -m.(ln 1 0 ) ( ~  (c{372)) 

(no + 1)2(72) 1/2 [ 12 ~1/2 

m, (In 10) ~N(N 2 - 1)] (64) 

which provides an accuracy 

An(approx.) - An(Monte-Carlo) 

An(Monte-Carlo) 

of 17% in the worst case for a standard deviation 
An smaller than 20% of n (An/n < 0.2). 

6 Different Experimental Procedures 

The most effective way to essentially increase the 
accuracy is to test more specimens. If the number 
of loading rates is increased to six, one needs ten 
additional tests, but they last ten times longer. On 
the other hand, if the number of  tests at a certain 
loading rate is increased to 15, 25 additional bend- 
ing strength tests have to be performed. These 
additional tests are less time consuming, but need 
more preparation work for the higher number of  
specimens. 

In fact, both variants are nearly equal. Testing 
at more loading rates is only slightly better and 
reduces the standard deviation in comparison to 
testing at five loading rates by a factor of about 
0.75, testing 15 instead of 10 specimens at one 
loading rate by a factor of about 0-8, both evalu- 
ated using the method of the scale parameters. 

The authors want to point out that the knowl- 
edge of the Weibull modulus is a necessary condi- 

tion to estimate the reliability of  determining n 
values. When a new material is produced, the 
Weibull modulus of  the ceramic of course is not 
known in advance. Then it is recommended that 
the Weibull modulus m of  the inert strength is 
obtained by performing 30 tests at a loading rate, 
high enough to provide from crack extension. 
This was shown to be a reasonable number of 
tests to get a sufficiently exact value for the 
Weibull modulus. ~3 With this Weibull modulus, 
the number of  tests and loading rates respectively 
can be calculated, which is necessary to obtain a 
certain accuracy. Then these tests have to be 
performed at loading rates chosen in the way that 
the mean bending strength values show a decrease 
and keep off the plateau region of the inert 
strength values. 

7 Conclusion 

There exists a certain upper bound for the n value, 
dependent the Weibull modulus m, below which 
reliable results for n can be obtained by four- 
point-bending tests. It is possible to shift this 
upper bound to higher values and thus to enlarge 
the range of reliable results by the new evaluation 
procedure proposed. This evaluation needs only 
slightly more computational effort. 

If the n values are outside the limited range of  
applicability, i.e. they are higher than the upper 
bound, with the new evaluation procedure an 
increased number of specimens has to be tested. 
The number of specimens necessary, to obtain a 
certain accuracy can be computed according to 
eqn (60) to (63). High n values in combination 
with a low Weibull modulus m are questionable 
and only reliable if an extensive amount  of 
specimens is tested. Because of the high standard 
deviation the lifetime calculations can lead to 
extremely different results for this case. 

If the Weibull modulus is not known, it is recom- 
mended that 30 tests are performed at a very high 
loading rate to determine m of the inert strength. 
With the knowledge of m, one knows the theoreti- 
cally lowest margin of error of n for a certain 
number of  tests at a certain number of loading 
rates. 
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